6. príklad - Vzorové riešenie
Zadanie
Vzorové riešenie
Zo zadania vieme, že body A,\, B a C ležia na kružnici. Ich vzdialenosť od S tak bude rovnaká — polomer kružnice. Z toho vyplýva, že trojuholník ASC bude rovnoramenný so záklaňou AC. Takže pre uhly platí | \measuredangle ACS| = | \measuredangle CAS| = 66°. Navyše vieme, že súčet uhlov v trojuholníku je 180°, takže | \measuredangle ASC| = 180° - 2 \cdot 66° = 48°.
Rovnako ako trojuholník ACS, aj trojuholníky ABS a BCS sú rovnoramenné. Navyše majú aj všetky strany zhodne dlhé, keďže sa jedná o pravidelný mnohouholník. Uhly \measuredangle ASB a \measuredangle BSC sú teda rovnako veľké, takže musia byť 24°.
Na obvode kružnice musia byť body daného mnohouholníka rozmiestnené rovnomerne, nakoľko je pravidelný. Uhly okolo bodu S budú tak rovnaké 24° a spolu musia vyplniť 360°. Z toho vyplýva, že sa jedná o 360° : 24° = 15-uholník.
Odpoveď: Hľadaný mnoholuholník má 15 vrcholov.