Deň zo sústredenia - Ahojte Rieškari, aj tento rok sme si pre Vás pripravili Deň zo sústredka! Čo to je? Deň zo sústredka je skvelá akcia určená nielen pre starých rieškarov, ale aj pre … Prejsť na článok
×3. príklad - Vzorové riešenie
Zadanie
Vzorové riešenie
Chceme zistiť najmenší počet spinerov, ktoré naši hrdinovia našli. Počet spinerov v poslednej kôpke (kôpka, ktorá ostala po Velle) si označíme x. Zo zadania vieme, že táto kôpka je deliteľná 4, tým pádom aj x je deliteľné 4. Ďalej vieme, že táto kôpka je \frac{3}{4} počtu spinerov, ktoré boli v kôpke, predtým ako si spinery zobrala Vella. Aby sme dostali počet spinerov pred Vellou, stačí urobiť postup zo zadania naopak: \frac{x \cdot 4}{3}. Z toho vyplýva, že x musí byť deliteľné 3, lebo spinery nevieme deliť na menšie časti. Keďže je x deliteľné 3 \text{ a } 4, je zároveň deliteľné 12. Posledná kôpka bude násobkom čísla 12. Teraz vieme vyskúšať násobky 12 od 1 (musí byť aspoň 1 spiner, aby si naši hrdinovia mohli nejaké zobrať) až kým nenájdeme vhodný počet spinerov.
Začneme pri čísle 12. Teraz budeme robiť kroky v zadaní, ale od konca a všetky operácie nahradíme ich opačnými operáciami:
- Pred Vellou ostalo: (12 : 3) \cdot 4 + 1 = 17
- Pred Andym by malo ostať: (17 : 3) \cdot 4 + 1 = 23\frac{2}{3}. Tu je ale problém, lebo Andy by si nevyberal z celočíselného počtu spinerov.
Pokračujeme číslom 24:
- Pred Vellou ostalo: (24 : 3) \cdot 4 + 1 = 33
- Pred Andym ostalo: (33 : 3) \cdot 4 + 1 = 45
- Pred Majtym ostalo: (45 : 3) \cdot 4 + 1 = 61
Dostali sme sa až na začiatok a všetky počty sú celočíselné, tým pádom je toto riešenie správne. Zároveň menšie riešenie neexistuje, lebo sme začínali od najmenšieho násobku 12 a počet spinerov musí byť kladné celé číslo.
Odpoveď: Naši hrdinovia našli 61 spinerov.
Komentár
Väčšina z vás zvládla tento príklad výborne. Častou chybou bolo nezdôvodnenie toho, že počet spinerov v poslednej kôpke musí byť deliteľný 3.